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Abstract—Mobile cloud storage services have gained phenomenal success in recent few years. In this paper, we identify, analyze,

and address the synchronization (sync) inefficiency problem of modern mobile cloud storage services. Our measurement results

demonstrate that existing commercial sync services fail to make full use of available bandwidth, and generate a large amount of

unnecessary sync traffic in certain circumstances even though the incremental sync is implemented. For example, a minor document

editing process in Dropbox may result in sync traffic 10 times that of the modification. These issues are caused by the inherent

limitations of the sync protocol and the distributed architecture. Based on our findings, we propose QuickSync, a system with three

novel techniques to improve the sync efficiency for mobile cloud storage services, and build the system on two commercial sync

services. Our experimental results using representative workloads show that QuickSync is able to reduce up to 73.1 percent sync

time in our experiment settings.

Index Terms—Mobile cloud storage, mobile networks, measurement, synchronization efficiency
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1 INTRODUCTION

PERSONAL cloud storage services are gaining tremendous
popularity in recent years by enabling users to conve-

niently synchronize files across multiple devices and back
up data. Services like Dropbox, Box, Seafile have prolifer-
ated and become increasingly popular, attracting many big
companies such as Google, Microsoft or Apple to enter this
market and offer their own cloud storage services. As a pri-
mary function of cloud storage services, data synchroniza-
tion (sync) enables the client to automatically update local
file changes to the remote cloud through network communi-
cations. Synchronization efficiency is determined by the speed
of updating the change of client files to the cloud, and con-
sidered as one of the most important performance metrics
for cloud storage services. Changes on local devices are
expected to be quickly synchronized to the cloud and then
to other devices with low traffic overhead.

More recently, the quick increase of mobile devices poses
the new demand of ubiquitous storage to synchronize users’
personal data from anywhere at anytime and with any con-
nectivity. Some cloud storage providers have extended and
deployed their services in mobile environments to support
Mobile Cloud Storage Services, with functions such as
chunking and deduplication optionally implemented to
improve the transmission performance.

Despite the efforts, the sync efficiency of popular mobile
cloud storage services is still far from being satisfactory, and
under certain circumstances, the sync time is much longer
than expected. The challenges of improving the sync effi-
ciency in mobile/wireless environment are threefold. First,
as commercial storage services are mostly closed source with
data encrypted, their designs and operational processes
remain unclear to the public. It is hard to directly study the
sync protocol and identify the root cause of sync difficulty.
Second, although some existing services try to improve the
sync performance by incorporating several capabilities, it
is still unknown whether these capabilities are useful or
enough for good storage performance in mobile/wireless
environments. Finally, as a mobile cloud storage system
involves techniques from both storage and network fields, it
requires the storage techniques to be adaptive and work effi-
ciently in the mobile environment where the mobility and
varying channel conditions make the communications sub-
ject to high delay or interruption.

To address above challenges, we identify, analyze and
propose a set of techniques to increase the sync efficiency in
modern mobile cloud storage systems. Our work consists of
three major components: 1) identifying the performance
bottlenecks based on the measurement of the sync opera-
tions of popular commercial cloud storage services in the
mobile/wireless environment, 2) analyzing in details the
problems identified, and 3) proposing a new mobile cloud
storage system which integrates a few techniques to enable
efficient sync operations in mobile cloud storage services.

We first measure the sync performance of the most popu-
lar commercial cloud storage services in mobile/wireless
networks (Section 2). Our measurement results show that
the sync protocol used by these services is indeed ineffi-
cient. Specifically, the sync protocol can not fully utilize the
available bandwidth in high RTT environment or when

� Y. Cui, Z. Lai, and N. Dai are with the Department of Computer Science and
Technology, TsinghuaUniversity, Beijing 100084, P.R. China.
E-mail: cuiyong@tsinghua.edu.cn, {laizq13, dnw15}@mails.tsinghua.edu.cn.

� X. Wang is with the Department of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, New York, NY 11794.
E-mail: x.wang@stonybrook.edu.

Manuscript received 25 Jan. 2016; revised 3 Feb. 2017; accepted 28 Mar. 2017.
Date of publication 12 Apr. 2017; date of current version 1 Nov. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2017.2693370

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 12, DECEMBER 2017 3513

1536-1233� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 20,2022 at 07:06:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
https://orcid.org/0000-0001-8141-4181
mailto:
mailto:
mailto:


synchronizing multiple small files. Furthermore, although
some services, e.g., Dropbox, have implemented the incre-
mental sync to reduce the traffic size, this technique is
not valid in all scenarios. We observe that a document edit-
ing process may result in sync traffic 10 times that of the
modification.

We further conduct in-depth analysis of the trace data
and also apply decryption to identify the root cause of
the inefficiency in the sync protocol (Section 3). Based on
our studies, the two major factors that contribute to the inef-
ficiency are the inherent limitations of the sync protocol
and the distributed storage architecture. Specifically, the de-
duplication to reduce redundant data transmissions does
not always contribute to the sync efficiency. The distributed
nature of storage services poses a challenge to the practical
implementation of the delta encoding algorithm, and
the failure in the incremental sync may lead to a large traffic
overhead. The iterative sync scheme suffers from low
throughput when there is a need to synchronize a set of files
through a slow network.

Based on our observation and analysis, we propose Quick-
Sync, a system with three novel techniques to improve the
sync efficiency for mobile cloud storage services (Section 4).
To reduce the the sync time, we introduce Network-aware
Chunker to adaptively select the proper chunking strategy
based on real-time network conditions. To reduce the sync
traffic overhead, we propose Redundancy Eliminator to cor-
rectly perform delta encoding between two similar chunks
located in the original and modified files at any time during
the sync process. We also design Batched Syncer to improve
the network utilization of sync protocol and reduce the over-
headwhen resuming the sync from an interruption.

We build our QuickSync system on Dropbox, currently
the most popular cloud storage services, and Seafile, an
popular open source personal cloud storage system (Sec-
tion 5). Collectively, these techniques achieve significant
improvement in the sync latency for cloud storage services.
Evaluation results (Section 6) show that the QuickSync sys-
tem is able to significantly improve the sync efficiency,
reducing up to 73.1 percent sync time in representative sync
scenarios with our experiment settings. To the best of our
knowledge, we are the first to study the sync efficiency
problem for mobile cloud storage services.

2 SYNCHRONIZATION INEFFICIENCY

Sync efficiency indicates how fast a client can update
changes to the cloud. In this section, we conduct a series of
experiments to investigate the sync inefficiency issues exist-
ing in four most popular commercial cloud storage service

systems in wireless/mobile environments. We will further
analyze our observed problems and explain their root
causes in Section 3.

2.1 Architecture and Capabilities

The key operation of the cloud storage services is data sync,
which automatically maps the changes in local file systems
to the cloud via a series of network communications. Before
presenting the sync inefficiency issues, we first give a brief
overview of the typical architecture of cloud storage serv-
ices and the key capabilities that are often implemented for
speeding up data transmissions.

Architecture. A typical architecture of cloud storage serv-
ices includes three major components [1]: the client, the con-
trol server and the data storage server. Typically, a user has a
designated local folder (called sync folder) where every file
operation is informed and synchronized to the cloud by the
client. The client splits file contents into chunks and indexes
them to generate the metadata (including the hashes, modi-
fied time etc.). The file system on the server side has an
abstraction different from that of the client. Metadata and
contents of user files are separated and stored in the control
and data storage servers respectively. During the sync
process, metadata are exchanged with the control server
through the metadata information flow, while the contents are
transferred via the data storage flow. In a practical implemen-
tation, the control server and the data storage server may be
deployed in different locations. For example, Dropbox
builds its data storage server on Amazon EC2 and S3, while
keeping its own control server. Another important flow,
namely notification flow, pushes notifications to the client
once changes from other devices are updated to the cloud.

Key Capabilities. Cloud storage services can be equipped
with several capabilities to optimize the storage usage and
speed up data transmissions: 1) chunking (i.e., splitting a
content into a certain size data unit), 2) bundling (i.e., the
transmission of multiple small chunks as a single chunk), 3)
deduplication (i.e., avoiding the retransmission of content
already available in the cloud), 4) delta-encoding (i.e., only
transmitting the modified portion of a file) and 5) compres-
sion. The work in [2] shows how the capabilities are imple-
mented on the desktop clients. We further follow the
methods in [2] to analyze the capabilities already imple-
mented on the mobile clients. Table 1 summarizes the capa-
bilities of each service on multiple platforms, with the test
client being the newest released version before March 1,
2015. In following sections, we will show that these capabili-
ties also make a strong side impact on the sync efficiency.

TABLE 1
Capability Implementation of Four Popular Cloud Storage Services

Capabilities
Windows Android

Dropbox Google Drive OneDrive Seafile Dropbox Google Drive OneDrive Seafile

Chunking 4 MB 8 MB var. var. 4 MB 260 KB 1 MB �
Bundling

p � � � � � � �
Deduplication

p � � p p � � �
Delta encoding

p � � p � � � �
Data compression

p p � � � � � �
The var. refers to variable chunk size.
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2.2 Low DER Not Equal to Efficiency

To evaluate the effectiveness of deduplication in reducing
the original transmission data size, the metric Deduplication
Efficiency Ratio (DER) is defined as the ratio of the dedupli-
cated file size to the original file size. Intuitively, lower DER
means more redundancy can be removed and the total sync
time can be reduced. However, our experiment indicates
that lower DER may not alway make sync efficient.

As only Dropbox and Seafile incorporate the deduplica-
tion function, to study the relationship between the sync
time and DER, we use Wireshark to measure the packet
level trace of the two services in a controlled WiFi environ-
ment. We use tc to tune the RTT for each service according
to the typical RTT values in mobile/wireless networks [3].
We only perform measurements on the Windows platform
because most services did not implement the deduplication
on the Android platform. We collect about 500 MB user
data from a Dropbox user and upload these fresh data via
the tested services. From the trace captured we can get the
sync time and calculate the DER as a ratio of the transmis-
sion traffic size and the original traffic size.

Fig. 1 shows that the DER for Dropbox and Seafile are
87 and 65 percent respectively under each RTT setting. Intu-
itively, a higher DER value would take more time to com-
plete a sync operation. However, we find that in a better
network condition (e.g., when the RTT is 200 ms), it costs
more time for Seafile to complete the sync.

2.3 Failure of Incremental Sync

To reduce the network traffic for synchronizing changes,
some services such as Dropbox leverage the delta encoding
algorithm (e.g., rsync [4]) to achieve incremental sync instead
of full-file sync. However, as we will show next, the incre-
mental sync is not always available and the client software
may synchronize much more data than expected. To evalu-
ate how much additional traffic is incurred, we define a
metric Traffic Utilization Overhead (TUO) as the ratio of the
generated traffic size to the expected traffic size. When the value
of TUO is larger than 1, it indicates additional data are
transferred. A large TUO value indicates that more extra
data are transmitted to the storage server during a sync pro-
cess. We conduct two sets of experiments to find out when
the claimed incremental sync mechanism fails.

In the first experiment, all operations are performed on
synchronized files with both the metadata and contents
completely updated to the cloud. We perform three types of
basic operation in typical real-world usage patterns: flip bits,
insert and delete several continuous bytes at the head, end or
random position of the test file, and see howmuch sync traf-
fic will be generated when the given operation is performed.
Table 2 provides the details of these three basic operations.

Since 10 KB is the recommended default window size in the
original delta encoding algorithm [4], we vary w from 10 KB
to 5 MB to ensure that the modification size is larger than the
minimum delta that can be detected. To avoid the possible
interaction between two consecutive operations, the next
operation is performed after the previous one is completed.
An operation in each case is performed 10 times to get the
average result. Because GoogleDrive and OneDrive have not
implemented the incremental sync, they upload the whole
file upon the modification, and are expected to have a large
amount of traffic even for a slight modification. Thus in this
section our studies focus on Dropbox and Seafile.1

In Figs. 2 a, 2 b, and 2 c, for Dropbox, interestingly the
three types of operation result in totally different traffic
sizes. For the flip operation, in most cases the TUO is close
to 1. Even when the modification window is 10 KB, the
TUO is less than 1.75, indicating that incremental sync
works well for flip operations performed at any position.
The sync traffic of insert operation is closely related to the
position of the modification. The TUO is close to 1 when an
insertion is performed at the end of the file, but the gener-
ated traffic is much higher than expected when an insertion
is made at the head or a random position. Specifically,
inserting 3 MB data at the head or random position of a
40 MB file results in nearly 40 MB sync traffic, which is close
to the full file sync mechanism. The TUO results for the
delete operation are similar to the insert operation. Differ-
ently, deleting at the end of the file generates small sync
traffic (TUO is close to zero). However deleting at the head
or random position leads to larger sync traffic, especially for
a large file, e.g., 40 MB (TUO is larger than 10). Another
interesting finding is that for both insert and delete opera-
tions in Dropbox, the TUO drops to a very low value when
the modification window w is 4 MB, where the TUO is close
to 1 for the insert operation and close to 0 for the delete
operation.

In Figs. 2 d, 2 e, and 2 f, the TUO results of different oper-
ations for Seafile are similar. Although the TUO results are
close to 1 for large modifications (e.g., modified size � 1
MB), the TUO results are larger than 10 for all modifications
smaller than 100 KB. This shows that the incremental sync
in Seafile fails to reduce the sync traffic for small modifica-
tions, no matter where the changes are made in a file.

In the second experiment, we investigate the sync traffic
of performing the modification on the files while the sync
data are in the middle of transmissions to the cloud. We first
create a 4 MB fresh file in the sync folder, and perform the

Fig. 1. Lower DER does not always make efficient.

TABLE 2
Three Types of Modification Operations

Operation Description (assuming the file size is S bytes)

Flip flip w bytes data at the head, end or random
position of the test file.

Insert insert w random data at the head, end or
random position of the test file.

Delete delete w random data at the head, end or
random position of the test file.

1. The latest version of Seafile adds the incremental sync. Therefore,
based on our prior conference versionwe add themeasurement for Seafile.
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same flip operation as that in the first experiment at a ran-
dom position with the modification window w ¼ 512 KB in
every 20 s. Note that the TUO of such an operation is close to
1 in the first experiment, and in the second experiment, the
flip operation is performed immediately after the file is created
while the sync process has not completed. Such a behavior is
common for an application such as MS-word or VMware
which creates fresh temp files and periodically modifies
them at runtime. We vary the number of modifications to
measure the traffic size. We also use tc to involve additional
RTT to see the traffic under different network conditions.

Fig. 3 shows the sync traffic of Dropbox for periodic flip
on a 4 MB file with various RTT. Interestingly, for all cases
the TUO is larger than 2, indicating that at least 8 MB data
are synchronized. Moreover, we observe that the TUO is
affected by the RTT. When the RTT is 600 ms, surprisingly
the TUO rises with the increase of the modification times.
The sync traffic reaches up to 28 MB, 448 percent of the new
content size(including both the fresh file and immediate
modifications) when the modifications are performed five
times. The result of Seafile is similar to that of Dropbox and
omitted due to the page limit.

Collectively, our measurement results show that the
incremental sync does not workwell in all cases. Specifically,
for insert and delete operations at certain positions, the gen-
erated traffic size is much larger than the expected size.
Moreover, the incremental sync mechanism may fail when
attempting to synchronize with the files in the middle of the
sync process which results in undesirable traffic overhead.

2.4 Bandwidth Inefficiency

Sync throughput is another critical metric that reflects the
sync efficiency. The sync protocol relies on TCP and its
performance is affected by network factors such as RTT or
packet loss. Because of different system implementations,
it is unreasonable to evaluate how the underlying band-
width of a storage service is used by directly measuring the
throughput or latency [2]. To characterize the network
usage of sync protocol, we introduce a novel metric, Band-
width Utilization Efficiency (BUE), which is defined as the
ratio of the practical measured throughput to the theoretical
TCP bandwidth. The latter indicates the available bandwidth
in steady state and can be estimated by Segment size�cwnd

RTT ,
where cwnd is the observed average congestion window
size during the transmission. The BUE metric is a value
between 0 and 1. Rather than measuring the end-to-end
throughput, we apply BUE to evaluate how well the cloud
storage service can utilize the available network bandwidth
to reduce the sync time.

To investigate how the sync protocol utilizes the underly-
ing network bandwidth, we have the Windows and
Android clients of Dropbox, GoogleDrive, OneDrive and
Seafile run in Wi-Fi and cellular networks (UMTS) respec-
tively. We create a set of highly compressed files (to exclude
the effect of compression) with various total sizes in the
sync folder and measure the packet-level trace using Wire-

shark and tcpdump. We compute the theoretical TCP band-
width based on real-time observed RTT and cwnd to
calculate BUE. In Wi-Fi networks, we use tc to tune the
RTT, simulating various network conditions. In cellular net-
works we change the position to tune the RTT. Each test is
performed 10 times to calculate the average result.

The BUE results of all services in WiFi networks with dif-
ferent RTT are shown in Fig. 4. For each service, the BUE of
synchronizing 4 MB file is close to 1, reflecting that all serv-
ices are able to fully utilize the available bandwidth. The
traffic size of synchronizing 40 KB*100 files is close to that
of 4 MB file, but we observe that the BUE slumps signifi-
cantly when synchronizing multiple files. This degradation
is more serious for GoogleDrive and OneDrive, with their

Fig. 2. Traffic utilization overhead of Dropbox and Seafile generated by a set of modifications. In this experiment, we perform flip, insert, and delete
operation over continuous bytes at the head, end or random position of the test file.

Fig. 3. TUO of synchronizing modification in the middle of sync process.
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BUE dropping under 20 percent when syncing 40 KB*100
files. For all services, BUE decreases for large files such as
20 or 40 MB and when RTT increases. The degradation of
BUE indicates that the sync protocol cannot efficiently uti-
lize the underlying available bandwidth. The decrease of
BUE for large RTT indicates that the sync protocol can not
well adapt to a slow network. Results in cellular networks
are similar and omitted due to the page limit.

3 ROOT CAUSE OF SYNC INEFFICIENCY

Our observations have demonstrated that mobile cloud
storage services suffer from sync inefficiency problems. In
this section, we analyze the sync protocol and explain the
root causes for the inefficiency.

3.1 Pinning Down the Sync Protocol

It is difficult to directly analyze the sync protocol of com-
mercial services such as Dropbox, as they are closed source
and most of the network traffic is encrypted. To understand
the sync protocol, we exploit both measurement and
decryption. Specifically, we first analyze the network traces
of all services studied in Section 2 to show the general sync
process, and then we hijack the encrypted traffic of Dropbox
to understand the protocol details.

Commonality Analysis. Although it is difficult to obtain
the protocol details from the encrypted sync, we still can
get some high-level knowledge of the protocol by analyz-
ing the packet-level network traces, and our analyses
indicate that the sync processes of all services in various
platforms commonly have three key stages: 1) sync prepa-
ration stage, the client first exchanges data with the control
server; 2) data sync stage, the client sends data to, or
retrieves data from the data storage server. In case that
the chunking scheme is implemented, data chunks are
sequentially stored or retrieved with a “pause” in
between, and the next chunk will not be transferred until
the previous one is acknowledged by the receiver; 3) sync

finish stage, the client communicates with the control
server again to conclude its sync process.

In-Depth Analysis. The Dropbox client is written in
Python. To decrypt the traffic and obtain the details of the
sync protocol, we leverage the approach in [5] to hijack the
SSL socket by DynamoRIO [6]. Although we only decrypt
the Dropbox protocol, combining the commonality analysis
we think the other three services may follow a sync protocol
similar to that of Dropbox.

Fig. 5 shows a typical Dropbox sync workflow when
uploading a new file. In the sync preparation stage, the file is
first split and indexed locally, and the block list which
includes all identifiers of chunks is sent to the control server
in the commit_batch. Chunks existing in the cloud can be
identified through hash-based checking and only new
chunks will be uploaded. Next in the data-synchronization
stage, the client communicates with the storage server
directly. The client synchronizes data iteratively, and in
each round of iteration several chunks will be sent. At the
end of one round of iteration, the client updates the meta-
data through the list message to inform the server that a
batch of chunks have been successfully synchronized, and
the server sends an OK message in response. Finally in the
sync-finish stage, the client communicates with the control
server again to ensure that all chunks are updated by the
commit_batch, and updates the metadata.

3.2 Why Less Data Cost More Time

Generally, to identify the redundancy in the sync process, the
client splits data into chunks and calculates their hashes to
find the redundancy. However, chunking with a large num-
ber of hashing operations is computationally expensive, and
the time cost and the effectiveness of deduplication are
strongly impacted by the chunking method. For instance,
fixed-size chunking used by Dropbox is simple and fast, but
is less effective in deduplication. Content defined chunking
(CDC) [7] used by Seafile is more complex and computation
extensive, but can identify a larger amount of redundancy.

In our experiment in Section 2.2, when RTT is 200 ms,
Seafile uses the content defined chunking to achieve
65 percent DER. Although the available bandwidth is suffi-
cient, the complex chunking method takes too much time
hence its total sync time is larger than Dropbox. However,
when the RTT is 500 ms and the bandwidth is limited, lower
DER leads to lower sync time by significantly reducing the
transmission time. The key insight from this observation is
that it is helpful to dynamically select the appropriate
chunking method according to the channel condition.

3.3 Why the Traffic Overhead Increases

Although delta encoding is a mature and effective method,
it is not implemented in all cloud storage services. One

Fig. 4. Bandwidth utilization efficiency of four cloud storage services in various network conditions.

Fig. 5. A typical sync process of Dropbox.
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possible reason is that most delta encoding algorithms work
at the granularity of file, while to save the storage space for
lower cost, files are often split into chunks to manage for
cloud storage services. Naively piecing together all chunks
to reconstruct the whole file to achieve incremental sync
would waste massive intra-cluster bandwidth.

Among popular storage clouds, Dropbox implements
delta encoding at the chunk granularity. From the decrypted
traffic, we find that each chunk has a “parent” attribute
to map it to another similar chunk, and the delta encoding
is adopted between the two chunks. Fig. 6 shows howDrop-
box performs delta encoding at the granularity of chunk
when inserting 2 MB data at the head of a 10 MB file. When
the file is modified, the client follows the fixed-size chunking
method to split and re-index the file. The chunks without
hash change are not processed further, so the TUO results of
4 MB window size in Fig. 2 are all close to 1. Otherwise, a
map is built based on the relative locations of the original
and modified versions, and the delta encoding is executed
between mapped chunks. Thus the delta of C1’ and C1 is
2 MB and the total delta is 6 MB, 3 times the insertion size. In
Fig. 2, inserting 3 MB data at the head of 40 MB file causes
nearly 40 MB the total sync traffic, because all chunks are
mapped to different parents after the re-indexing. In this
case, the incremental sync fails to only update the changed
content. Different from Dropbox, the source codes of Seafile
indicate that the minimal modification it can detect is 1 MB,
which makes its delta-encoding algorithm very inefficient.
Seafile generates much higher unexpected sync traffic for
small filemodifications.

As discussed in Section 3.1, the metadata is updated after
contents are successfully uploaded. Therefore, for a chunk in
the middle of sync, if it is modified before sync finishes, the
chunk can not be used for delta encoding. In the second
experiment in Section 2.3, when the modification happens at
the beginning time of the sync process, the client has to
upload both the original and modified versions and thus the
TUO is at least 2. Moreover, in the case that RTT=600 ms,
every modification is performed during the uploading pro-
cess, and eachmodified version has to be uploaded entirely.

3.4 Why the Bandwidth Utilization Decreases

Iteration is a key characteristic of the data sync, but may sig-
nificantly reduce the bandwidth utilization. There are sev-
eral reasons. First, when synchronizing a lot of chunks
smaller than the maximum chunk size, the client has to wait
for an acknowledgement from the server before transferring
the next chunk. Thus the sequential acknowledgement lim-
its the bandwidth usage, especially when sending a number
of small files and RTT is high.

Second, although Dropbox incorporates bundling to bun-
dle small chunks into a bigger one (up to 4 MB) to mitigate
the problem, we can still see the throughput slumps
between two iterations when synchronizing large files (e.g.,
40 MB). Different from other storage services, when trans-
ferring multiple big chunks at 4 MB, Dropbox opens up to
four concurrent TCP connections during the sync process.
At the beginning of a new iteration, the client assigns new
chunks for different connections. If one connection has
transferred the assigned chunk and received the acknowl-
edgement, it will not immediately start to send the next
chunk. Only after the other three connections have finished
transmissions, the new chunks are assigned. During the
iterations, because of the idle waiting of several connections,
the throughput reduces significantly.

Moreover, for GoogleDrive, it opens several new TCP
connections, each taking one iteration to transfer one chunk.
For instance, it totally creates 100 storage flows in 100 itera-
tions to synchronize 100 small files. Such a mechanism
would incur additional overhead for opening a new SSL
connection and extend the slow start period, leading to sig-
nificant throughput degradation thus reduced BUE.

4 SYSTEM DESIGN

Improving the sync efficiency in wireless networks is
important for mobile cloud storage services. In light of vari-
ous issues that result in sync inefficiency, we propose
QuickSync, a novel system which concurrently exploits a
set of techniques over current mobile cloud storage services
to improve the sync efficiency.

4.1 System Overview

To efficiently complete a sync process, our QuickSync system
introduces three key components: the Network-aware
Chunker (Section 4.2), the Redundancy Eliminator (Sec-
tion 4.3), and the Batched Syncer (Section 4.4). The basic func-
tions of the three components are as follows: 1) identifying
redundant data through a network-aware deduplication technique;
2) reducing the sync traffic by wisely executing delta encoding
between two “similar” chunks; and 3) adopting a delayed-batched
acknowledgement to improve the bandwidth utilization.

Fig. 7 shows the basic architecture of QuickSync. The sync
process begins upon detecting a change (e.g., add or modify
a file) in the sync folder. First, the Chunk Selector inside the
Network-aware Chunker splits an input file through content
defined chunking with the chunk size determined based on
the network condition monitored by the Network Monitor.
Metadata and contents are then delivered to the Redundancy
Eliminator, where redundant chunks are removed and delta

Fig. 6. An example to explain why the incremental sync fails in Dropbox.
After inserting 2 MB data (C4) at the beginning of a 10 MB file, Dropbox
re-indexes chunks and calculates the delta content.

Fig. 7. QuickSync system overview.
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encoding is executed between similar chunks to reduce
the sync traffic for modification operations. Specifically,
QuickSync leverages the Sketch-based Mapper to calculate
the similarity of different chunks and identify similar
chunks. A database is applied to store metadata of local
files. Finally the Batched Syncer leverages a delayed-batched
acknowledgement mechanism to synchronize all data
chunks continuously to the cloud and conclude the sync pro-
cess. Like other cloud storage systems, QuickSync separates
the control server for metadata management from the stor-
age server for data storage. Metadata and file contents are
transferred bymeta flow and content flow respectively. Next
we describe the detailed design for each component.

4.2 Network-Aware Chunker

To improve the sync efficiency, our first step is to identify the
redundant data before the sync process. Although dedupli-
cation is often applied to reduce the data redundancy for
storage in general cloud systems, extending existing dedu-
plication techniques for personal cloud storage services faces
two new challenges. First, previous deduplication techni-
ques mostly focus on saving the storage space [8], improving
the efficiency for large-scale remote backup [9], [10], or only
optimizing the downlink object delivery [11]. These strate-
gies are difficult to apply for personal cloud storage because
they often involve huge overhead and require an important
property named “stream-informed” [8], which requires the
data segment and their fingerprints to follow the same order
as that in a data file or stream. Such a property is not included
in a personal scenario. Second, a deduplication scheme
should be network-aware in a mobile network with varying
topology and channel conditions. A deduplication with
aggressive chunking will incur high computational cost for
mobile devices, which may degrade the sync performance
under good network conditions (Section 2.2).

Generally, the chunking granularity is closely related to
the computation overhead and the effectiveness of dedupli-
cation. A more aggressive chunking strategy with very
small chunk size may allow for more effective deduplica-
tion, but would involve higher total computation overhead
to identify the duplicated data over a large number of
chunks, and vice versa. All previous deduplication systems
use a static chunking strategy with a fixed average chunk
size. Derived from the basic idea of Dynamic Adaptive
Streaming over HTTP (DASH), the basic procedure of our
approach is to adaptively select an appropriate chunking
strategy according to the real-time network conditions to
reduce the total sync time. Intuitively, in slow networks,
since the bandwidth is limited, we select aggressive chunk-
ing strategy to identify more redundancy and reduce the

transmission time. When the bandwidth is sufficient, we
prefer larger chunks because of its lower computation over-
head. Specifically, our approach consists of two key techni-
ques as we will introduce below.

4.2.1 Network-Aware Chunk Size Selection

Instead, we propose the concept of Virtual Chunk that
implicitly stores the offset and length to generate the
pointers to the real content. For each user file on the server
side, QuickSync only stores one copy of all its chunks
including real contents, all Virtual Chunks under different
chunking strategies, and the metadata. Specifically, the
metadata mainly contains a block list including all hashes of
chunks, and a vblock list including all hashes of Virtual
Chunks. For a Virtual Chunk, the offset and the length of
the corresponding chunks can be calculated based on the
knowledge of all previous Virtual Chunk sizes in the vblock
list. Therefore each Virtual Chunk only needs to store the
chunk size of itself. In an uploading process of QuickSync,
after receiving all chunks of a file, the server forms the file
according to its metadata. It then conducts all other strate-
gies on the chunking strategy list to resplit the file and gener-
ate the metadata under various strategies.

Fig. 8 gives an example to illustrate howQuickSync gener-
ates Virtual Chunks on the server to reduce the storage over-
head. Assume that we have two optional chunking strategies
to process a 6 MB file. To respond to different chunking
requirements of the client, the server can maintain multiple
block_lists containing all hashes and multiple copies of the
same file, as shown in Fig. 8 a at the cost of large storage
space. Figs. 8 b and 8 c show the cases when we use Virtual
Chunks to save the storage space. For all Virtual Chunks gen-
erated by the equal chunking strategy, we add a vblock_list
including all hashes of these Virtual Chunks to themetadata.

When the server needs to synchronize data to a client, the
server first finds the corresponding chunk through the given
metadata. If the chunk found is a virtual one, the server
fetches the corresponding content based on the offset and
length of the chunk recorded. Fig. 9 shows an example. Like
all other commercial systems, QuickSync does not transfer
contents between two clients directly. A file is split into two
chunks and uploaded to the server. Then the server takes
other strategies to get three Virtual Chunks that point to the
real contents. When the server needs to update or send the
Virtual Chunks, it fetches the content from the storage based
on its pointer.

4.3 Redundancy Eliminator

The Redundancy Eliminator is designed to eliminate the
redundant sync traffic. Ideally, only the modified parts of
the file need to be synchronized to the server through a tech-
nique such as delta encoding. However the effective func-
tion of delta encoding has two requirements. First, the map

Fig. 8. An example showing how QuickSync generates Virtual Chunks
on the server.

Fig. 9. When the server synchronizes data to the client, the server finds
real contents via Virtual Chunks and then delivers data to the client.
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of the new to the old version must be identified as the input
for encoding. Second, the two versions for encoding must
be “similar”, otherwise executing the delta encoding will
not provide any benefit but only involves additional com-
putation overhead. As discussed in the previous section, all
files in current cloud storage systems are stored as indepen-
dent chunks distributedly, and the delta encoding algorithm
is executed between pairs of chunks in the modified and the
original file. With the fixed-size chunking, modification on
file may lead to a map between two “un-similar” chunks.
Also, a chunk in the middle of the uploading process cannot
be compared to enable delta encoding. We employ two tech-
niques to alleviate these problems.

4.3.1 Sketch-Based Mapping

In QuickSync, once changes are detected and the modified
files are split into chunks, two similar chunks in the original
and the modified files are mapped in two steps. We first
compare the hashes of the new chunks with those of the
original file to identify the unchanged chunks that do not
need to be updated. Second, for the chunks without a hash
match in the original version, we leverage a technique
named sketch to estimate the similarity of chunks in the two
versions. We only build a map between two similar chunks
in the new and old versions to perform delta-encoding. The
chunks without either a hash or sketch match are treated as
“different” chunks and will be transferred directly. We get
the sketch by identifying “features” [9] of a chunk that
would not likely change when there are small data varia-
tions. In our implementation of QuickSync, we apply a roll-
ing hash function over all overlapping small data regions,
and we then choose the maximal hash value seen as one fea-
ture. We generate multiple features of the same chunk using
different hash functions. Chunks that have one or more fea-
tures in common are likely to be very similar, but small
changes to the data are unlikely to perturb the maximal val-
ues. To better represent a chunk, we get the sketch of the
chunk by calculating the XOR of four different features.

4.3.2 Buffering Uncompleted Chunks

To take advantage of the chunks transmitted in the air for
the delta encoding, we introduce two in-memory queues to
buffer the incomplete chunks that have been processed by
the Network-aware Chunker. The uploading queue temporar-
ily stores all chunks waiting to be uploaded via network
communication, with each chunk recorded with three parts:
the data content, the hash value and the sketch of it. New
chunks from the Network-aware Chunker are pushed into
this queue and popped up if they have been completely
uploaded. We can thus build a map between a new chunk
and the one found in the uploading queue.

To handle modification operations, we create an updating
queue to buffer a chunk that finds a sketchmatch with another
chunk either on the server or the local uploading queue. Each
chunk in the updating queue is tagged with the hash of its
matched chunk. Chunks are inserted into the updating queue
if a sketch match is found and popped up when the delta
encoding for two similar chunks is completed.

Algorithm 1 summarizes how Redundancy Eliminator
processes chunks provided by Network-aware Chunker and

eliminates redundant data before delivering chunks to the
Batched Sync for transmission. Upon file modifications and
the triggering of sync, files are first split into chunks by the
Network-aware Chunker. Then the Redundancy Eliminator
executes the two-step mapping process. The chunk without
a sketch or hashmatch is treated as a new chunk and inserted
into the uploading queue directly, while the ones foundwith
sketch match are bundled by the Redundancy Eliminator
along with their hashes and put in the updating queue. In
Algorithm 1, we include an uploading process that monitors
the uploading queue and delivers chunks to Batched Syncer
for further uploading. We also provide an independent
updating process to continuously fetch chunk from the
updating queue, and then calculate the delta between the
mapped chunks. The delta will be inserted into the upload-
ing queue. Finally all data in the uploading queue are syn-
chronized to the server by the Batched Syncer.

Algorithm 1. Sync Process at the Redundancy Eliminator

1: /*Assume that files are split as chunk_list first.*/
2: Two-step mapping process:
3: for each chunk Ci in chunk_list do
4: /*Step 1: check whether Ci is redundant.*/
5: if find hashðCiÞ in uploading queue or cloud then
6: omit redundant Ci, continue;
7: end if
8: /*Step 2: check whether Ci has a similar chunk.*/
9: if find sketchðCiÞ in uploading queue or cloud then
10: map Ci to the matched one;
11: add Ci to updating queue;
12: else
13: add Ci to uploading queue;
14: end if
15: end for
16: /*Upload new chunks to the cloud.*/
17: Uploading process:
18: for each chunk Ci in uploading queue do
19: deliver Ci to Batched Syncer for uploading;
20: end for
21: /*Perform delta-encoding between mapped chunks.*/
22: Updating process:
23: for each chunk Ci in updating queue do
24: calculate the delta between Ci and the mapped one;
25: deliver the delta to Batched Syncer for uploading;
26: end for

4.4 Batched Syncer

The per-chunk sequential acknowledgement from the appli-
cation layer and the TCP slow start are the main factors that
decrease the bandwidth utilization, especially for the sync
of multiple small chunks. To improve the sync efficiency,
we design the Batched Syncer with two key techniques to
improve the bandwidth utilization.

4.4.1 Batched Transmission

Cloud storage services leverage the app-layer acknowledge-
ment to maintain the chunk state. As a benefit, upon a con-
nection interruption, a client only needs to upload the un-
acknowledged chunks to resume the sync. Dropbox simply
bundles small chunks into a large chunk to reduce the
acknowledgement overhead. Although this helps improve
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the sync throughput, when there is a broken connection, the
Dropbox client has to retransmit all small chunks if the bun-
dled one is not acknowledged.

Our first basic technique is to defer the app-layer acknow-
ledgement to the end of the sync process, and actively check
the un-acknowledged chunks upon the connection interrup-
tion. This method on the one hand reduces the overhead due
to multiple acknowledgements for different chunks and also
avoids the idle waiting for the acknowledgement between
two chunk transmissions. On the other hand it avoids the
need of retransmitting many chunks upon a connection
interruption. The check will be triggered under two condi-
tions. First, the check will be initiated when the client cap-
tures a network exception, usually caused by the process
shut down or the connection loss at the local side. Second,
the failure of the sync process can be also caused by interrup-
tion in the network that cannot be easily detected by the local
devices. To detect the network failure, we monitor the trans-
mission progress to estimate if there is an exception in the
network. Specifically, we monitor the data transfer progress
in small time windows (e.g., a second). If there is no progress
in several consecutive time windows, the Batched Syncer
actively terminates the current connection and checks the
control server for themissing chunks.

During the transmission, the Batched Syncer continuously
sends chunks in the uploading queue of the Redundancy
Eliminator. If the connection is interrupted by network
exceptions or the sync process has no progress for a period of
time, the client connects to the control server to query the un-
acknowledged chunks, and then uploads them after the con-
tent flow is re-established.

4.4.2 Reusing Existing Network Connections

The second technique is to reuse the existing network con-
nections rather than making new ones in storing files. While
it may be easy and natural to make a new network connec-
tion for each chunk, the handshake overhead for establish-
ing a new connection is not negligible, and creating many
new connections also extends the period in the slow start
state especially for small chunks. The Batched Syncer reuses
the storage connection to transfer multiple chunks, avoiding
the overhead of duplicate TCP/SSL handshakes. Moreover,
cloud storage services maintain a persistent notification
flow for capturing changes elsewhere. Hence we reuse the
notification flow for both requesting notification and send-
ing file data to reduce the handshake overhead and the
impact of slow start. Specifically, both the request and data
are transferred over HTTP(S), so we use the Content-

Type field in the HTTP header to distinguish them in the
same TCP connection.

5 SYSTEM IMPLEMENTATION

To evaluate the performance of our proposed schemes, we
build the QuickSync system over both Dropbox and Seafile
platforms.

Implementation Over Dropbox. Since both the client and
server of Dropbox are totally closed source, we are unable
to directly implement our techniques with the released
Dropbox software. Although Dropbox provides APIs to
allow user program to synchronize data with the Dropbox

server, different from the client software, the APIs are
RESTful and operate at the full file level. We are unable to
get the hash value of a certain chunk, or directly implement
delta-encoding algorithm via the APIs.

To address this problem, we leverage a proxy in Amazon
EC2 which is close to the Dropbox server to emulate the
control server behavior. The proxy is designed to generate
the Virtual Chunks, maintain the map of file to the chunk
list and calculate the hash and the sketch of chunks. During
a sync process, user data are first uploaded to the proxy,
and then the proxy updates the metadata in the database
and stores the data to the Dropbox server via the APIs. Since
the data storage server of Dropbox is also built on Amazon
EC2, the bandwidth between our proxy and Dropbox is suf-
ficient and not the bottleneck.

To make our Network-aware Chunker efficient and
adjustable, we use the SAMPLEBYTE [11] as our basic
chunking method. Like other content defined chunking
methods, the sample period p set in SAMPLEBYTE also
determines both the computation overhead and dedupli-
cation ratio. We leverage the adjustable property of p to
generate a suite of chunking strategies with various dedu-
plication ratio and computation overhead, including the
chunk-based deduplication with the average chunk size
set to 4, 1 MB, 512 and 128 KB. Each Virtual Chunk con-
tains a 2-byte field for chunk length.

We use librsync [13] to implement delta encoding. We
use a tar-like method to bundle all data chunks in the sync
process, and a client communicates with our proxy at the
beginning of a sync process to notify the offset and length of
each chunk in the sync flow. The timer of our Syncer is set
to 60 s. We write the QuickSync client and proxy in around
2,000 lines of Java codes. To achieve efficiency, we design
two processes to handle chunking and transmission tasks
respectively in the client. The client is implemented on a
Galaxy Nexus smartphone with a 1.2 GHz Dual Core CPU,
1 GB memory and the proxy is built on an Amazon EC2
server with a 2.8 GHz Quad Core CPU and 4 GB memory.

Implementation Over Seafile. Although we introduce a
proxy between the client and the Dropbox server, due to the
lack of full access of data on the server, this implementation
suffers from the performance penalty. For instance, to per-
form delta encoding, the proxy should first fetch the entire
chunk from the Dropbox server, update its content and
finally store it back to Dropbox. Even though the bandwidth
between the proxy and the Dropbox server is sufficient,
such an implementation would inevitably involve addi-
tional latency during the sync process.

In order to show the gain in the sync efficiency when our
system is fully implemented and can directly operate over
the data, we further implement QuickSync with Seafile [14],
an open source cloud storage project. The implementation
is similar to that using Dropbox but without the need of a
proxy. Specifically, we directly modify source codes at both
the client and server sides. We modify the client in a Linux
laptop with a 2.6 GHz Intel Quad Core CPU and 4 GB mem-
ory. We build the server on a Linux machine with a 3.3 GHz
Intel Octal Core CPU and 16 GB memory, as only the Seafile
software on Linux platform is open source. Techniques in
QuickSync can also be implemented in the similar way on
other mobile platforms.
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6 PERFORMANCE EVALUATION

To evaluate the performance of our schemes, we first inves-
tigate the throughput improvement of using the Network-
aware Chunker, and then show that the Redundancy Elimi-
nator is able to effectively reduce the sync traffic. We further
evaluate the capability of the Batched Syncer in improving
the bandwidth utilization efficiency. Finally, we study the
overall improvement of the sync efficiency using real-world
workloads. In each case, we compare the performances of
the original Seafile and Dropbox clients with those when
the two service frameworks are improved with QuickSync.

6.1 Impact of the Network-Aware Chunker

Wefirst evaluate how theNetwork-aware Chunker improves
the throughput under various network conditions.We collect
about 200 GB data from 10 cloud storage services users, and
randomly pick about 50 GB as the data set for uploading. The
rest about 150 GB data are pre-stored on the server for dedu-
plication purpose. We repeat the sync process under various
RTT to measure the sync speed, defined as the ratio of the
original data size to the total sync time, and the average CPU
usage of both the client and server. The minimal RTT from
our testbed to the Seafile and Dropbox server is 30 and
200ms respectively.

In Fig. 10a, when the RTT is very low (30 ms), since the
bandwidth is sufficient, the client selects the un-aggressive
chunking strategy with low computation overhead to split
files, and the sync speed outperforms the original one by
12 percent. In Fig. 10b, the Network-aware Chunker is shown
to adaptively select smaller average chunk size in a poor net-
work condition to eliminate more redundancy and reduce
the total sync time. Thus, although the sync speed decreases
at higher RTT, our scheme can still achieve a higher total sync
speed by selecting a smaller average chunk size with the
aggressive chunking strategies to eliminatemore redundancy
and thus reduce the transmission time. Overall, our imple-
mentations can dynamically select an appropriate chunking
strategy for deduplication,which leads up to about 31 percent
increase of the sync speed under various network conditions.

We plot the CPU usages of QuickSync client and server
in Fig. 11. Since the original systems do not change their
chunking strategies based on network conditions, we also
plot their constant CPU usages as the baseline. As RTT
increases, the CPU usages for both the client and server of
QuickSync increase, as more aggressive chunking strategy
is applied to reduce the redundant data. The CPU usage for
Seafile is lower because of more powerful hardware. The
CPU usage of client reaches up to 12.3 and 42.7 percent in
two implementations respectively which is still within the
acceptable range.

6.2 Impact of the Redundancy Eliminator

Next we evaluate the sync traffic reduction of using our
Redundancy Eliminator with the average chunk size set to
1 MB to exclude the impact of adaptive chunking. We con-
duct the same set of experiments for modify operation as
shown in Fig. 2, and measure the sync traffic size to calcu-
late their TUO.

In Fig. 12, for both flip and insert operations, the TUO of
our mechanism for all files in any position is close to 1,
indicating that our implementation only synchronizes the
modified content to server. The TUO results for flip or
insert operation on small files (� 100 KB) have reached
1.3, where the additional traffic is due to the basic over-
head of delta encoding. The TUO results for delete opera-
tion are close to 0 because the client does not need to
upload the delta besides performing the delta encoding.
The results of Dropbox modification are similar and omit-
ted due to the page limit.

Furthermore, to evaluate the traffic reduction for syn-
chronizing changes of file whose corresponding chunks are
on their way to the server, we conduct the same set of
experiments as those in Fig. 3 with the results shown in
Table 3. The TUO results in each case are close to 1. Our
scheme only needs to synchronize the new contents under
arbitrary number of modifications and any RTT, with our
in-memory uploading queue to buffer files in the middle of
transmissions to facilitate the delta encoding.

Fig. 10. Speed improved by network-aware Chunker. Fig. 11. CPU overhead of network-aware Chunker.

Fig. 12. Traffic utilization overhead reduction of Seafile modification.
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6.3 Impact of the Batched Syncer

6.3.1 Improvement of BUE

To examine the performance of the Batched Syncer in
improving the bandwidth utilization, we set the average
chunk size to 1 MB to exclude the impact of adaptive chunk-
ing. In Section 2.4, we observe that cloud storage services
suffer low BUE, especially when synchronizing a lot of
small files. We conduct the same set of experiments with
use of our proposed schemes.

Fig. 13 shows the level of BUE improvement under different
network conditions. When synchronizing a batch of chunks,
the reduction of the acknowledgement overhead helps
improve the bandwidth utilization efficiency up to 61 percent.
The improvement is more obvious in high RTT environment
where the throughput often experiences big reduction espe-
ciallywhen the acknowledgements are frequent.

6.3.2 Overhead for Exception Recovery

The per chunk acknowledgement is designed to reduce the
recovery overhead when the sync process is unexpectedly
interrupted. In our Batched Syncer, the client will not wait
for an acknowledgement for every chunk. Now we examine
whether this design will cause much more traffic overhead
for exception recovery. We upload a set of files with differ-
ent sizes, and close the TCP connection when half of the file
has been uploaded. After the restart of the program, the cli-
ent will create a new connection to finish the sync. We
record the total sync traffic and calculate the TUO in Fig. 14.
Our results show that in each case, the TUO of QuickSync is
close to 1, and the highest TUO is only about 1.5, indicating
that our implementations will not cause very high overhead
for exception recovery. In our design, before resuming the
sync, the client communicates with the server first to check
the chunks that are not received and need to be transferred.

6.4 Performance of the Integrated System

Now we assess the overall performance of our implementa-
tion using a series of representative workloads for cloud
storage services on Windows or Android. Each workload
combines a set of file operation events, including file

creation, modification or deletion, which will trigger corre-
sponding events in the local file system. The event number
in each workload and performance results are shown in
Table 4. We compare the sync performance of QuickSync
with other two alternatives. LBFS [7] is a low-bandwidth
remote file system that leverages the fine-granularity
content-defined chunking to identify and reduce the redun-
dant sync traffic. EndRE [11] is an end-system redundancy
elimination service. We also show the performance results
of the original system as the baseline in our evaluation.

We first generate the workloads on Windows platform
based on Seafile and its modification. The QuickSync Paper
workload is resulted from uploading the files of this paper,
and the Seafile Source generates load by storing all the
source codes of the Seafile. Both types of workload contain
a lot of small files and do not contain the file modification or
deletion. Compared to the original system, although the
traffic size reduction for the two workloads are small (7.5
and 8.9 percent), our implementation reduces the total sync
time by 35.1 and 51.8 percent respectively. The reduction is
mainly caused by bundling the small files to improve the
bandwidth utilization, as the Seafile Source contains 1,259
independent files. The Document Editing workload on Win-
dows is generated when we naturally edit a PowerPoint file
in the sync folder from 3 to 5 MB within 40 min. We capture
many creation and deletion events during the editing pro-
cess, as temporary files whose sizes are close to that of the
original .ppt file are created and deleted. Changes are auto-
matically synchronized. Our solution significantly reduces
the traffic size, with QuickSync to execute the delta encod-
ing on the temporary files in the middle of the sync process
to reduce the traffic. The Data Backup workload on Win-
dows is a typical usage for large data backup. This work-
load contains 37,655 files, with various file types (e.g., PDF
or video) and sizes (from 1 KB to 179 MB). Our QuickSync
achieves 37.4 percent sync time reduction by eliminating
the redundancy and reducing the acknowledgement over-
head to improve the bandwidth utilization.

We also play the workload on Android platform. The
Document Editing workload on Android is similar to that
generated in the above experiment but contains fewer modi-
fications. Our implementation reduces 41.4 percent of the
total sync time. The Photo Sharing is a commonworkload for
mobile phones. Although the photos are often in the encoded
format and hard to be deduplicated, our implementation can
still achieve 24.1 percent time saving through the batched
transmission scheme. The SystemBackupworkload is gener-
ated to back up all system settings, app binaries together
with app configurations in a phone via a slow 3G network.
As our implementation adaptively selects aggressive chunk-
ing strategy to eliminate larger amount of the backup traffic

TABLE 3
TUO of Sync Process

RTT (ms) Seafile+QuickSync Dropbox+QuickSync

# ¼ 1 # ¼ 3 # ¼ 5 # ¼ 1 # ¼ 3 # ¼ 5

30 1.2306 1.1795 1.1843 - - -
200 1.1152 1.2742 1.1834 1.1067 1.1777 1.2814
400 1.2039 1.2215 1.2420 1.1783 1.1585 1.2978
600 1.2790 1.1233 1.2785 1.2268 1.2896 1.1865

During the uploading process, modifications are performed in the being synced
files.

Fig. 13. BUE improvement.

Fig. 14. Recovery overhead.
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and bundles chunks to improve the bandwidth utilization,
52.9 percent sync time saving is achieved. App Data Backup
is a workload generated when we walk in the outdoor envi-
ronment while using a phone in a LTE network to back up
the data and configurations of several specified applications.
As the network condition changes during our movement,
QuickSync dynamically selects the proper chunking strategy
to eliminate the redundant data, which reduces 45.1 percent
sync traffic and 73.1 percent total sync time.

Interestingly, for most workloads in our experiment
LBFS achieves the lowest traffic size in the sync process, but
the total sync time of LBFS is larger than other solutions.
This is because LBFS leverages a very aggressive deduplica-
tion strategy that chops files into small chunks and identi-
fies redundant data by checking hash values. However, the
aggressive strategy does not always improve the sync effi-
ciency since it is computation-intensive in the resource-
constraint mobile platform. In addition, the effectiveness of
deduplication degrades for compressed workloads (e.g.,
photo sharing). QuickSync outperforms LBFS and EndRE
by adaptively selecting the proper chunking strategy
according to current network conditions, and wisely execut-
ing delta encoding during file editing.

7 RELATED WORK

Measurement Study. Recently a large number of measure-
ment research efforts have been conducted on enterprise
cloud storage services [15], [16], [17], [18] and personal
cloud storage services [2], [19], [20], [21], [22], [23], [24], [25].

Focusing on the enterprise cloud storage services,
CloudCmp [15] measures the elastic computing, persistent
storage, and networking services for four major cloud pro-
viders. The study in [16] provides a quantitative analysis of
the performance of the Windows Azure Platform. Works in
[17] perform an extensive measurement against Amazon S3
to elucidate whether cloud storage is suitable for scientific
grids. Similarly, [18] presents a performance analysis of the
Amazon Web Services. However these studies provide no
insights into personal cloud storage services, while our
measurement study focuses on the emerging personal cloud
storage services in mobile/wireless environments.

Some literature studies also attempt to analyze the per-
formance of personal cloud storage services. To our best
knowledge, Hu et al. first analyze personal cloud storage
services by comparing the performance of Dropbox, Mozy,
Carbonite and CrashPlan [24]. However, they only provide

an incomplete analysis on the backup/restore time for sev-
eral types of files. Gracia-Tinedo et al. study the REST inter-
faces provided by three big players in the personal cloud
storage arena [22], and more recently they conduct a mea-
surement study of the internal structure of UbuntuOne [21].
Drago et al. give a large-scale measurement for Dropbox
[19], and then compare the system capabilities for five popu-
lar cloud storage services in [2]. However, all these previous
studies only focus on the desktop services based on black-
box measurement. Li et al. give the experimental study of
the sync traffic, demonstrating that a considerable portion of
the data sync traffic is wasteful [20]. Our work steps closer
to reveal the root cause of inefficiency problem from the pro-
tocol perspective, and we are the first to study the sync effi-
ciency problem in mobile/wireless networks where the
network condition (e.g., RTT) may change significantly.

System Design. There are many studies about the system
design for cloud storage services [26], [27] but they mostly
focus on enterprise backup instead of the personal cloud.
UniDrive [28] is designed to boost the sync performance of
personal cloud storage services by leveraging multiple
available clouds to maximize the parallel transfer opportu-
nities. However, relying on existing cloud storage plat-
forms, UniDrive is not able to address the sync inefficiency
problems we identified in existing personal cloud storage
services. An adaptive sync defer (ASD) mechanism is pro-
posed to adaptively defer the sync process to follow the lat-
est data update [29]. The bundling idea of our Batched
Syncer is similar to ASD, but ASD incurs much more recov-
ery overhead when the sync is interrupted. Moreover, as a
middleware solution, ASD can not avoid the incremental
sync failure described in Section 2.3. QuickSync addresses
the sync failure problem by applying our sketch-based
redundancy elimination. ViewBox [30] is designed to detect
the corrupted data through the data checksum and ensure
the consistency by adopting view-based synchronization. It
is complemented with our QuickSync system.

CDC and Delta Encoding. QuickSync leverages some exist-
ing techniques, such as content defined chunking [7], [8],
[9], [10], [11], [14], [31], [32] and delta encoding [4]. Rather
than directly using these schemes, the aim of QuickSync is
to design best strategies to adjust and improve these techni-
ques for better supporting mobile cloud storage services. In
all previous systems using CDC, both the client and server
use the fixed average chunk size. In contrast, QuickSync uti-
lizes CDC addressing for a unique purpose, adaptively

TABLE 4
Practical Performance Evaluation for QuickSync Using a Series of Real World Representative Workloads

Workload (Platform) # of Events Traffic Size Sync Time

C M D Origin QSync LBFS EndRE Origin QSync LBFS EndRE

QuickSync Paper (W) 74 0 0 4.67 MB 4.32 MB 4.18 MB 4.47 MB 27.6 s 17.9 s 31.4 s 19.8 s
Seafile Source (W) 1,259 0 0 15.6 MB 14.2 MB 13.7 MB 14.9 MB 264.1 s 127.3 s 291.8 s 174.1 s
Document Editing (W) 12 74 7 64.3 MB 12.7 MB 57.3 MB 60.2 MB 592.0 s 317.3 s 514.8 s 488.2 s
Data Backup (W) 37,655 0 0 2 GB 1.4 GB 1.1 GB 1.6 GB 68.7 m 43.1 m 83.4 m 55.6 m
Document Editing (A) 1 4 0 4.1 MB 1.5 MB 3.7 MB 3.9 MB 24.4 s 14.3 s 46.8 s 21.9 s
Photo Sharing (A) 11 0 0 21.1 MB 20.7 MB 20.2 MB 20.6 MB 71.9 s 54.6 s 133.6 s 65.2 s
System Backup (A) 66 0 0 206.2 MB 117.9 MB 96.4 MB 136.9 MB 612.3 s 288.7 s 762.4 s 402.8 s
App Data Backup (A) 17 0 0 66.7 MB 36.6 MB 34.9 MB 41.3 MB 465.7 s 125.0 s 271.4 s 247.9 s

We compare the sync performance with the original system, LBFS [7], and EndRE [11]. W: Windows platform. A: Android platform. Event C: Creation. Event
M: Modification. Event D: Deletion.
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selecting the optimized average chunking size to achieve
the sync efficiency. Delta encoding is also not a new idea
but it poses big challenge when implemented with the cloud
storage system where files are split into chunks and stored
distributedly. The techniques proposed in our Redundancy
Eliminator leverage the sketch of chunks to address the lim-
itation and wisely perform delta encoding on similar
chunks to reduce the sync traffic overhead.

8 DISCUSSION

In this section, we discuss other issues in deploying and
using QuickSync to improve the sync efficiency for mobile
cloud storage services.

Why QuickSync Focuses on Upload Traffic. In our current
design of QuickSync, we mainly focus on improving the
sync efficiency of the upload transmission for two key rea-
sons. First, the dominant traffic of most traditional mobile
applications, such as web browser, streaming application, or
news reader incur the download traffic. Hence a number of
previous efforts have studied on the download transmission
optimization in mobile/wireless environments [10], [11],
[31]. However as an emerging and popular services, mobile
cloud storage generates significant upload traffic which is
rarely studied in previous works. Second, typically in an
LTE/3G network, the upload throughput is much less than
the download throughput [3]. Therefore, it is necessary and
more important to improve the sync efficiency for the upload
traffic of cloud storage services in amobile environment.

Energy Consumption. In this paper we mostly focus on the
sync efficiency of mobile cloud storage services. Due to the
limited battery drain of mobile devices, energy consump-
tion is another important performance metric for the mobile
sync services [33]. It is hard to give a conclusion whether
QuickSync will cause additional energy consumption for
mobile devices. This is because QuickSync improves the
sync efficiency by increasing the bandwidth utilization and
reducing the volume of sync traffic. Although our techni-
ques may cause additional computation overhead in certain
scenarios, these techniques also effectively reduce the data
transmission time as well as the energy caused by network
interfaces. Generally, the transmission energy consumption
is more significant. However, we would not claim that
QuickSync reduce the energy consumption, but will study
the energy problem in the future.

Deployment of QuickSync. QuickSync can be deployed in
current cloud storage services by adding a QuickSync proxy
between the client and the server, or updating the existing
server-side infrastructure to incorporate these new techni-
ques provided by QuickSync. A proxy-based implementa-
tion is easier for deployment but involves more computation
and storage overhead since it requires the proxy to temporar-
ily store the intermediate state of the sync process, while a
full implementation of QuickSync can achieve better perfor-
mance but needs to update the server. Besides, a proxy-based
implementation is also complemented with multi-cloud sys-
tem [28] which is built on multiple existing cloud providers
to obtain better reliability and security.

9 CONCLUSION

Despite their near-ubiquity, mobile cloud storage services
fail to efficiently synchronize data in certain circumstance.

In this paper, we first study four popular cloud storage
services to identify their sync inefficiency issues in wireless
networks. We then conduct the in-depth analysis to give the
root causes of the identified problems with both trace stud-
ies and data decryption. To address the inefficiency issues,
we propose QuickSync, a system with three novel techni-
ques. We further implement QuickSync to support the sync
operation with Dropbox and Seafile. Our extensive evalua-
tions demonstrate that QuickSync can effectively save the
sync time and reduce the significant traffic overhead for
representative sync workloads.
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